213 research outputs found

    Response Features Determining Spike Times

    Get PDF
    Interpreting messages encoded in single neuronal responses requires knowing which features of the responses carry information. That the number of spikes is an important part of the code has long been obvious. In recent years, it has been shown that modulation of the firing rate with about 25 ms precision carries information that is not available from the total number of spikes across the whole response. It has been proposed that patterns of exactly timed (1 ms precision) spikes, such as repeating triplets or quadruplets, might carry information that is not available from knowing about spike count and rate modulation. A model using the spike count distribution, the low pass filtered PSTH (bandwidth below 30 Hz), and, to a small degree, the interspike interval distribution predicts the numbers and types of exactly-timed triplets and quadruplets that are indistinguishable from those found in the data. From this it can be concluded that the coarse (<30 Hz) sequential correlation structure over time gives rise to the exactly timed patterns present in the recorded spike trains. Because the coarse temporal structure predicts the fine temporal structure, the information carried by the fine temporal structure must be completely redundant with that carried by the coarse structure. Thus, the existence of precisely timed spike patterns carrying stimulus-related information does not imply control of spike timing at precise time scales

    Long-Term Stability of Visual Pattern Selective Responses of Monkey Temporal Lobe Neurons

    Get PDF
    Many neurons in primate inferotemporal (IT) cortex respond selectively to complex, often meaningful, stimuli such as faces and objects. An important unanswered question is whether such response selectivity, which is thought to arise from experience-dependent plasticity, is maintained from day to day, or whether the roles of individual cells are continually reassigned based on the diet of natural vision. We addressed this question using microwire electrodes that were chronically implanted in the temporal lobe of two monkeys, often allowing us to monitor activity of individual neurons across days. We found that neurons maintained their selectivity in both response magnitude and patterns of spike timing across a large set of visual images throughout periods of stable signal isolation from the same cell that sometimes exceeded two weeks. These results indicate that stimulus-selectivity of responses in IT is stable across days and weeks of visual experience

    Neurons in the monkey orbitofrontal cortex mediate reward value computation and decision-making

    Get PDF
    Choice reflects the values of available alternatives; more valuable options are chosen more often than less valuable ones. Here we studied whether neuronal responses in orbitofrontal cortex (OFC) reflect the value difference between options, and whether there is a causal link between OFC neuronal activity and choice. Using a decision-making task where two visual stimuli were presented sequentially, each signifying a value, we showed that when the second stimulus appears many neurons encode the value difference between alternatives. Later when the choice occurs, that difference signal disappears and a signal indicating the chosen value emerges. Pharmacological inactivation of OFC neurons coding for choice-related values increases the monkey’s latency to make a choice and the likelihood that it will choose the less valuable alternative, when the value difference is small. Thus, OFC neurons code for value information that could be used to directly influence choice

    High-potency ligands for DREADD imaging and activation in rodents and monkeys

    Full text link
    Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are a popular chemogenetic technology for manipulation of neuronal activity in uninstrumented awake animals with potential for human applications as well. The prototypical DREADD agonist clozapine N-oxide (CNO) lacks brain entry and converts to clozapine, making it difficult to apply in basic and translational applications. Here we report the development of two novel DREADD agonists, JHU37152 and JHU37160, and the first dedicated 18F positron emission tomography (PET) DREADD radiotracer, [18F]JHU37107. We show that JHU37152 and JHU37160 exhibit high in vivo DREADD potency. [18F]JHU37107 combined with PET allows for DREADD detection in locally-targeted neurons, and at their long-range projections, enabling noninvasive and longitudinal neuronal projection mapping

    Photolysis of a caged peptide reveals rapid action of NSF prior to neurotransmitter release

    Get PDF
    Author Posting. © The Author(s), 2007. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences 105 (2008): 347-352, doi:10.1073/pnas.0707197105.The time at which the N-ethylmaleimide-sensitive factor (NSF) acts during synaptic vesicle trafficking was identified by time-controlled perturbation of NSF function with a photo-activatable inhibitory peptide. Photolysis of this caged peptide in the squid giant presynaptic terminal caused an abrupt (0.2 s) slowing of the kinetics of the postsynaptic current (PSC) and a more gradual (2-3 s) reduction in PSC amplitude. Based on the rapid rate of these inhibitory effects relative to the speed of synaptic vesicle recycling, we conclude that NSF functions in reactions that immediately precede neurotransmitter release. Our results indicate the locus of SNARE protein recycling in presynaptic terminals and reveal a new target for rapid regulation of transmitter release.T.K. was supported by a Grass Fellowship in Neuroscience, an HFSP long-term fellowship and the Feodor-Lynen Program of the Alexander von Humboldt Foundation. Y.L. received a American Heart Association predoctoral fellowship. The research also was supported by NIH NS-21624

    Short-Term Memory Trace in Rapidly Adapting Synapses of Inferior Temporal Cortex

    Get PDF
    Visual short-term memory tasks depend upon both the inferior temporal cortex (ITC) and the prefrontal cortex (PFC). Activity in some neurons persists after the first (sample) stimulus is shown. This delay-period activity has been proposed as an important mechanism for working memory. In ITC neurons, intervening (nonmatching) stimuli wipe out the delay-period activity; hence, the role of ITC in memory must depend upon a different mechanism. Here, we look for a possible mechanism by contrasting memory effects in two architectonically different parts of ITC: area TE and the perirhinal cortex. We found that a large proportion (80%) of stimulus-selective neurons in area TE of macaque ITCs exhibit a memory effect during the stimulus interval. During a sequential delayed matching-to-sample task (DMS), the noise in the neuronal response to the test image was correlated with the noise in the neuronal response to the sample image. Neurons in perirhinal cortex did not show this correlation. These results led us to hypothesize that area TE contributes to short-term memory by acting as a matched filter. When the sample image appears, each TE neuron captures a static copy of its inputs by rapidly adjusting its synaptic weights to match the strength of their individual inputs. Input signals from subsequent images are multiplied by those synaptic weights, thereby computing a measure of the correlation between the past and present inputs. The total activity in area TE is sufficient to quantify the similarity between the two images. This matched filter theory provides an explanation of what is remembered, where the trace is stored, and how comparison is done across time, all without requiring delay period activity. Simulations of a matched filter model match the experimental results, suggesting that area TE neurons store a synaptic memory trace during short-term visual memory

    Modeling the Violation of Reward Maximization and Invariance in Reinforcement Schedules

    Get PDF
    It is often assumed that animals and people adjust their behavior to maximize reward acquisition. In visually cued reinforcement schedules, monkeys make errors in trials that are not immediately rewarded, despite having to repeat error trials. Here we show that error rates are typically smaller in trials equally distant from reward but belonging to longer schedules (referred to as “schedule length effect”). This violates the principles of reward maximization and invariance and cannot be predicted by the standard methods of Reinforcement Learning, such as the method of temporal differences. We develop a heuristic model that accounts for all of the properties of the behavior in the reinforcement schedule task but whose predictions are not different from those of the standard temporal difference model in choice tasks. In the modification of temporal difference learning introduced here, the effect of schedule length emerges spontaneously from the sensitivity to the immediately preceding trial. We also introduce a policy for general Markov Decision Processes, where the decision made at each node is conditioned on the motivation to perform an instrumental action, and show that the application of our model to the reinforcement schedule task and the choice task are special cases of this general theoretical framework. Within this framework, Reinforcement Learning can approach contextual learning with the mixture of empirical findings and principled assumptions that seem to coexist in the best descriptions of animal behavior. As examples, we discuss two phenomena observed in humans that often derive from the violation of the principle of invariance: “framing,” wherein equivalent options are treated differently depending on the context in which they are presented, and the “sunk cost” effect, the greater tendency to continue an endeavor once an investment in money, effort, or time has been made. The schedule length effect might be a manifestation of these phenomena in monkeys
    corecore